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Abstract—In recent years, many works on digital image
watermarking have been proposed all aiming at protection
of the copyright of an image document or authentication of
data. This paper proposes a novel watermark decoder in the
contourlet domain. It is known that the contourlet coefficients
of an image are highly non-Gaussian and a proper distribution
to model the statistics of the contourlet coefficients is a heavy-
tailed PDF. It has been shown in the literature that the normal
inverse Gaussian (NIG) distribution can suitably fit the empirical
distribution. In view of this, statistical methods for watermark
extraction are proposed by exploiting the NIG as a prior for
the contourlet coefficients of images. The proposed watermark
extraction approach is developed using the maximum likelihood
method based on the NIG distribution. Closed-form expressions
are obtained for extracting the watermark bits in both clean
and noisy environments. Experiments are performed to verify
the robustness of the proposed decoder. The results show that
the proposed decoder is superior to other decoders in terms of
providing a lower bit error rate. It is also shown that the proposed
decoder is highly robust against various kinds of attacks such as
noise, rotation, cropping, filtering and compression.

Index Terms—Digital image watermarking, contourlet trans-
form, normal inverse Gaussian distribution, watermark extrac-
tion.

I. INTRODUCTION

D IGITAL image watermarking has become a necessity in
many applications such as data authentication, broadcast

monitoring on the Internet and ownership identification [1]-
[4]. Various watermarking schemes have been proposed to
protect the copyright information [4]-[10]. There are three
indispensable, yet contrasting requirements for a watermarking
scheme: robustness, invisibility and capacity. Therefore, a
watermarking scheme should provide a trade-off between these
features. The watermarking techniques can be categorized in
different ways based on (1) the embedding domain: pixel [5],
[6] or frequency [7]-[16], (2) the embedding method: additive
[8], [12], [14], [17], multiplicative [7], [10], [11], [15] or
based on quantization [18], and (3) the extraction or detection
methods: blind [7], [8], or non-blind [16], [17]. It has been
shown that the multiplicative watermarking schemes are more
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robust and provide higher imperceptibility of the watermark
than the additive ones [11]. Therefore, detection and extraction
of the multiplicative watermarks have received a great deal of
attention [7], [11], [16].

A watermarking scheme should be robust against any in-
tentional or unintentional distortion, and only an authorized
user should be able to detect the watermark. The robustness
can be significantly increased by utilizing the spread spectrum
technique [3], [7], [17] in which the watermark is embedded
in transform domains such as the discrete cosine transform
[9], [14], discrete wavelet transform [8], [13], [15], [20],
finite ridgelet transform [17], curvelet transform [21], or the
contourlet transform [7], [16], [22]-[27]. Recently, a number
of watermarking schemes have been proposed, wherein the
watermark is embedded into the contourlet coefficients of an
image. It has been shown that the contourlet-domain water-
marking techniques are more robust than other frequency-
domain watermarking algorithms against attacks [7], [24],
[27].

Extraction of the watermarks can be achieved by using sta-
tistical methods. Therefore, choosing an appropriate statistical
model is of great importance. It is known that to design a sta-
tistical watermark decoder, the correlation-based method is not
optimal for non-Gaussian transform domain coefficients and
thus, other alternative optimum and locally optimum detectors
and decoders have been proposed [7]-[12], [14]-[16], [28]. In
these works, the coefficients are assumed to be independent
and identically distributed as the generalized Gaussian (GG)
[16], [29], Laplacian [15], Gausse-Hermite [8], Cauchy [7],
[21], K-Bessel function [28], Beta distribution [30], alpha-
stable distributions [7], [14], [31], Gaussian mixture model
[32] and normal inverse Gaussian distributions [33]-[35].

In [28], a locally-optimum watermark detector for additive
watermarks using the Bessel K form distribution has been
proposed. In [30], an optimum watermark decoder has been
proposed by modeling the noisy watermarked dihedral angles
by the Beta distribution. A watermark decoder has been
designed in [36] by modeling the wavelet coefficients of
images using the Gaussian distribution.

It is known that the contourlet coefficients of images have
significant non-Gaussian statistics, i.e., having large peaks
around zero and tails heavier than that of a Gaussian prob-
ability density function (PDF) [7], [30]. In view of this, these
coefficients have been so far modeled by the non-Gaussian
distributions such as the GG, alpha-stable and Cauchy PDFs.
Accordingly, statistical watermark detectors by using the
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alpha-stable [7] and GG [16] PDFs, and watermark decoder
using the GG PDF [16] have been proposed.

It is shown in [33] that the normal inverse Gaussian (NIG)
PDF can also be used to model the contourlet coefficients of
images, since this distribution provides a very close fit to the
distribution of the contourlet coefficients of images. In water-
marking application, this distribution has been used to design
a watermark detector for additive watermarks in the wavelet
domain [34]. However, there exist no work on multiplicative
watermark decoder in the contourlet domain using the NIG
distribution. In view of this and in order to achieve higher
robustness against various kinds of attacks, in this work, a new
statistical multiplicative watermark decoder is designed based
on the NIG distribution. The optimum watermark decoder in
the contourlet domain is designed by using the maximum
likelihood method. Closed-form expressions of the proposed
decoder are obtained for extracting the watermark bits in both
clean and noisy environments. Experiments are performed to
assess the performance of the proposed NIG-based decoder
and to compare it with those obtained using other existing
works. The robustness of the proposed watermarking scheme
is examined when the watermarked images are attacked by
JPEG compression, Gaussian noise, salt & pepper noise,
median filtering, Gamma correction, rotation, cropping and
scaling.

The paper is organized as follows: Sections II presents a
brief review of the contourlet transform and the normal inverse
Gaussian distribution. In Section III, watermark embedding
procedure is discussed and a watermark decoder based on the
NIG model is designed. In Section IV, the performance of
the proposed watermarking decoder is examined. Section V
concludes the paper.

II. CONTOURLET TRANSFORM

The contourlet transform, a new image decomposition
scheme proposed in [37], provides an efficient representation
for two-dimensional signals with smooth contours and in
this case outperforms the wavelet transform, which fails to
recognize the smoothness of the contour. In addition, con-
tourlet transform offers a higher degree of directionality with
better sparseness. There are number of other structures such
as the complex wavelet [38], ridgelet [17], [39] and curvelet
[21], [40] that also provide multiscale and directional image
representation. However, these structures are not flexible in the
sense that they do not permit for different number of directions
at each scale. Moreover, since the contourlet transform has
been introduced in the discrete domain, it overcomes the
blocking artifact drawback of the curvelet transform and is
computationally more efficient. In the contourlet transform,
the Laplacian pyramid filter captures the point singularities,
which are contained in the residual signal. This residual signal
is then passed through a directional filter bank that decomposes
it into several directions to obtain directional information. This
process is repeated by decomposing the coarse version to
obtain directional subbands at multiple scales. The schematic
structure of the analysis part of the contourlet transform is
shown in Fig. 1.
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Fig. 1. Block diagram of the contourlet filter bank structure. The Laplacian
pyramid is applied to the original image in order to have multiscale decom-
position where the coarse image, denoted by L, is iteratively subsampled and
each residual image, denoted by R, is fed into directional filter bank to obtain
directional information. The scheme is flexible since it allows for a different
number of directions at each scale.

There are many works on image watermarking showing
that the performance of the contourlet-domain algorithms is
superior to that of the wavelets [7], [24], [27]. This is mostly
due to the fact that the contourlet transform captures more
directional information and has better sparseness properties.
These make the contourlet-domain watermarking algorithms
more resistant to attacks. In recent years, statistical properties
of the contourlet coefficients have received great attention and
used in many image processing applications such as image
watermarking [7], [16]. In has been shown that the contourlet
coefficients of an image are highly non-Gaussian [29], [32],
[41], i.e., having large peaks around zero and tails heavier
than that of a Gaussian PDF. Therefore, a proper distribution
to model the statistics of the contourlet coefficients would
be a heavy-tailed PDF. It is shown in [33] that the NIG
PDF provides a very close fit to the contourlet coefficients of
images. The NIG distribution can be presented by a mixture
of two independent distributions as [42],

X = µ+ βZ +
√
ZY (1)

where Y ∼ N(0, 1) is the Gaussian and Z ∼ IG(δ, γ) is the
inverse Gaussian distributions, respectively. It follows from (1)
that X|Z = z ∼ N(µ+βz, z) [42]. The IG PDF is then given
by [43]

fIG(z) =
δeδγz−3/2√

2π
exp

{
−1

2

(
δ2

z
+ γ2z

)}
(2)

The NIG density function is then given by [44], [45],

fNIG(x) =
αδeδγ+β(x−µ)

π

K1

(
α
√
δ2 + (x− µ)2

)
√
δ2 + (x− µ)2

(3)

where Kλ(x) is a modified Bessel function of the second kind
with index λ and γ =

√
α2 − β2. The shape of the NIG

distribution is specified by the parameter α, while β, µ and
δ are skewness, location, and scale parameters, respectively.
The parameters are bound as 0 ≤ |β| < α, δ > 0 and −∞ <
µ <∞. The steepness of the PDF is controlled by α in that,
as it is increased, the PDF becomes steeper. For a zero-mean
and symmetric data distribution, µ = β = 0.
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Fig. 2. Block diagram of the watermarking procedure. I and Iw denote the original and watermarked images, respectively.

III. WATERMARKING

A. Watermark embedding

In view of the fact that the multiplicative watermarks are
image content dependent [11], and thus more robust than ad-
ditive watermarks, in our proposed watermarking scheme, we
embed the watermark bits in a multiplicative spread spectrum
approach in the contourlet domain. The contourlet transform
is first applied to an image to capture the important features
of the image in a few coefficients. In case of a single bit
watermarking scheme, let x = {x1, ..., xN} be the magnitude
of a set of contourlet coefficients of the host image and
w = {w1, ..., wN} be a pseudo-random sequence taking values
{−1, 1}. The set of watermarked coefficients y = {y1, ..., yN}
is obtained by

yi = (1 + sign(xi)ξwi)xi, i = 1, ..., N (4)

where ξ is a positive weighting factor used to provide a
trade-off between the robustness of the watermarking scheme
and the imperceptibility of the embedded watermark based
on the local characteristics of the image. The watermark is
generated using a pseudo-random sequence generator with
an authentication key as its initial value. This pseudorandom
sequence spreads the spectrum of the watermark signal over
many coefficients making it difficult to be detected for unau-
thorized users. To maximize the security and robustness of
the watermarking scheme, the sequence should have white-
noise like properties [8]. A basic assumption is that the
statistical distribution of the contourlet coefficients is not
altered after embedding the watermark. This assumption is
naturally justified by the fact that the embedded watermark
is imperceptible. When the watermark carries a message,
i.e., multibit watermarking scheme, binary bits of 0 or 1 are
embedded as

yi|1 = (1 + sign(xi)ξ)xi, 1 is embedded

yi|0 = (1− sign(xi)ξ)xi, 0 is embedded (5)

It should be mentioned that ξ can be increased to a point where
the watermark is still invisible, and yet it is still detectable.
The watermarked contourlet coefficients are then inverse trans-
formed to get the watermarked image. Fig. 2 depicts the block
diagram of the proposed watermark embedding and decoding
procedures.

B. Watermark decoder

In a multi-bit watermarking scheme, the role of a decoder is
to extract the hidden binary sequence from a set of observed
contourlet coefficients. In our watermarking scheme, the bits
of the binary sequence are assumed to be equally probable and
the contourlet coefficients are assumed to be independent and
identically distributed by the NIG distribution. In this work, to
extract the hidden bits in the contourlet subband coefficients,
we develop an optimum decoder based on the NIG PDF. To
this end, for a subband with N coefficients, the maximum
likelihood decision can be formulated as

fNIG (y1, y2, ..., yN |1)

1

>

<

0

fNIG (y1, y2, ..., yN |0) (6)

in which

fNIG(y|1) =
αδeαδ

π

K1

(
α

√
δ2 +

(
y

1+sign(y)ξ

)2)
√
δ2 +

(
y

1+sign(y)ξ

)2 (7)

and

fNIG(y|0) =
αδeαδ

π

K1

(
α

√
δ2 +

(
y

1−sign(y)ξ

)2)
√
δ2 +

(
y

1−sign(y)ξ

)2 (8)

The decision is simplified as

N∑
i=1

ln

√
δ2+( yi

1−sign(yi)ξ )2K1

(
α
√
δ2+( yi

1+sign(yi)ξ
)2
)

√
δ2+( yi

1+sign(yi)ξ
)2K1

(
α
√
δ2+( yi

1−sign(yi)ξ )2
)

1

>

<

0

T

(9)
where T =

∑N
i=1 ln

1+sign(yi)ξ
1−sign(yi)ξ .

C. Watermark decoder in presence of noise

The watermarked coefficients yi may be contaminated by
zero mean additive white Gaussian noise n ∼ N(0, σ2

n) as

zi = (1 + sign(xi)ξwi)xi︸ ︷︷ ︸
yi

+n (10)
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Considering the independence assumption of the noise and
the observation, the density function of the noisy contourlet
coefficients can be obtained as

fz(z) =

∫ ∞
−∞

fy(z− τ)fn(τ)dτ (11)

where

fy(y) =
1

1 + sign(y)ξw
fx

(
y

1 + sign(y)ξw

)
(12)

To simplify (11), we can estimate the Gaussian PDF using the
three-sigma rule [16], [46]-[48]

fn(n) =


−n+3σn

9σ2
n

0 < n ≤ 3σn

0 |n| > 3σn
n−3σn

9σ2
n

−3σn ≤ n < 0

(13)

By substituting (13) in (11) and using the Simpsons integration
approximation rule (See appendix A), we have

f(z) =
σn
4

[2fNIG(z)fn(0) + 4fNIG(z− 3σn
2

)fn(
3σn

2
)

+ 4fNIG(z+
3σn

2
)fn(
−3σn

2
) + fNIG(z + 3σn)fn(−3σn)

+ fNIG(z− 3σn)fn(3σn)] (14)

which can be simplified to

f(z) =
1

6

(
fNIG(z− 3σn

2
) + fNIG(z) + fNIG(z+

3σn
2

)

)
(15)

Therefore, for fNIG(z|1) and fNIG(z|0) we respectively have

f(z1, z2, ..., zN |1) =

N∏
i=1

f(zi|1)

=
1

6

N∏
i=1

[fNIG,1(zi−
3σn

2
) + fNIG,1(zi) + fNIG,1(zi+

3σn
2

)]

(16)

and

f(z1, z2, ..., zN |0) =

N∏
i=1

f(zi|0)

=
1

6

N∏
i=1

[fNIG,0(zi −
3σn

2
) + fNIG,0(zi) + fNIG,0(zi +

3σn
2

)]

(17)

where fNIG,1 and fNIG,0 are computed from (7) and (8),
respectively. It is seen from (15) that the ML decision depends
on the noise standard deviation σn. To obtain an estimation
of the noise, we use the median estimator on the observed
contourlet coefficients of different scales and directions as [49]

σ̂n(j,d) =
Median|yj,d|

0.6745
(18)

where yj,d denotes the contourlet subband coefficients in the
jth, j = 1, ..., J scale and dth, d = 1, ..., D direction.

TABLE I
EFFECT OF TWO DIFFERENT CONTOURLET FILTERS ON THE

PERFORMANCE OF THE PROPOSED WATERMARKING SCHEME.

PSNR (dB) BER (%)

9-7 pkva 9-7 pkva

Barbara 52.38 52.10 7.9 11.5
Lena 55.58 55.13 6.1 9.8
Baboon 51.47 50.94 7.8 10.4
Boat 54.38 53.73 5.9 8.4

IV. EXPERIMENTAL RESULTS

Experiments are performed to evaluate the imperceptibility
of the embedded watermark as well as the robustness of the
proposed watermarking scheme against various attacks. In
our experiments, we use two set of grayscale images of size
512× 512, obtained from [50] and [51]. The original images
are first decomposed into a number of subbands by using the
contourlet transform with two pyramidal levels followed by
eight directions in each scale. We then select the subband
with the highest variance in the finest scale to embed the
watermark bits in a multiplicative manner, as in (4). The results
are obtained by averaging over 100 runs with 100 different
pseudorandom sequences as the watermark bits. For both
stages of the contourlet transform, two different contourlet
filters are considered, namely, the ladder filters, i.e., pkva and
9− 7 bi-orthogonal filters.

Table I gives the peak signal-to-noise-ratio (PSNR) and
bit error rate (BER) values obtained using the proposed
watermarking scheme with two different contourlet filters for
some of the test images. It is seen from this Table that the
9−7 biorthogonal filter is a better choice in our watermarking
scheme, since it provides higher PSNR values for the water-
marked images along with lower BER when the watermarked
images are contaminated by Gaussian noise with σn = 30.
Therefore, we obtain the rest of the results using 9 − 7 bi-
orthogonal filters. The original and watermarked images for
two of the test images, namely, Barbara and Lena, as well
as the absolute difference between the watermarked and the
original image are shown in Fig. 3. The PSNR values between
the original and watermarked Barbara and Lena images are
52.38 and 55.58 dB, respectively. The images are indistin-
guishable, thus showing the effectiveness of the contourlet-
domain multiplicative watermarking scheme in terms of the
invisibility of the watermark.

It should be noted that the PDFs of the original and water-
marked images are assumed to be the same, i.e., embedding the
watermark with small ξ does not change the distribution of the
original image coefficients [9], [14]. Therefore, the parameters
of NIG distribution can be estimated from observation y.
For the proposed NIG-based watermarking scheme, the only
required side information is 8 bits data for the watermark
strength ξ. In order to validate the theoretical expressions
of the proposed decoder in noisy environment, we compare
the experimental and theoretical BER values for a watermark
strength ξ varying from 0.001 to 1. Fig. 4 shows the theoretical
and experimental BER values averaged over 3000 images ob-
tained using the proposed decoder in noisy environment with
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Fig. 3. (a) Original, (b) watermarked test images of Barbara, PSNR=52.38 dB, and Lena, PSNR=55.58 dB, and (c) the difference between the original and
watermarked images obtained using the proposed watermarking scheme.
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Fig. 4. Theoretical and experimental BER of the extracted watermark obtained
using the proposed decoder for watermark strengths varying from 0.001 to
1, averaged over 3000 images obtained from [51].

σn = 40. It is seen from this figure that the experimental BER
is very close to the theoretical one indicating the validity of the
theoretical results obtained using (15). It is also seen from this
figure that the proposed decoder is very resistant to Gaussian
noise especially for ξ > 0.3. We now examine the performance
of the proposed watermark decoder in the contourlet domain
by using the NIG distribution and compare it to those yielded
by using the Cauchy and GG-based decoders with and without
attacks. Table II gives BER values obtained using the proposed
NIG-based decoder as well as that obtained using the Cauchy
and GG-based decoders with message lengths of 128 or 256
bits for three of the test images, namely, Barbara, Lena and
Boat, with and without attack. The attacks considered in this
experiment are JPEG compression with QF = 30 and 40,
AWGN with standard deviation σn = 10 and 20, median and
Gaussian filtering with windows sizes 3×3 and 7×7, Gamma
correction with γ = 0.5 and 2, rotation with θ = −5◦ and 5◦,

30 40 50 60 70 80 90
0

5

10

15

20

25

30

Quality factor (QF)

B
it 

er
ro

r 
ra

te
 (

%
)

 

 

Barbara−NIG−Proposed
Barbara−GG−[16]
Baboon−NIG−Proposed
Baboon−GG−[16]
Couple−NIG−Proposed
Couple−GG−[16]
Bridge−NIG−Proposed
Bridge−GG−[16]

Fig. 5. BER values of the extracted watermark obtained using the proposed
NIG-based decoder and the GG-based decoder in [16] under the JPEG
compression attack with different quality factors.

salt & pepper noise with p = 5% and 10%, and 5% and
15% cropping. It is seen from this table that the proposed
NIG-based decoder provides a lower BER value than the other
decoders do, in the presence or absence of any attack. Similar
results are also obtained for other test images.

We now compare the performance of the proposed NIG-
based decoder in the contourlet domain with that yielded by
other existing works such as [16], [19], [20], [30], [36] and
[52]-[55]. In order to make a fair comparison, we consider the
same message length and PSNR values in our experiments as
the message length and PSNR values used in other works. Fig.
5 shows BER values of the extracted watermark obtained using
the proposed decoder and that obtained using the decoder in
[16] for the test images, Barbara, Baboon, Couple and Bridge,
when the watermarked image is JPEG-compressed with QFs
from 30 to 90. It is seen from this figure that the proposed
decoder is more robust than that in [16] in terms of providing
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TABLE II
BIT ERROR RATES (%) OBTAINED USING THE PROPOSED NIG-BASED DECODER AS WELL AS THE CAUCHY AND GG-BASED DECODERS UNDER

DIFFERENT ATTACKS. (BEST RESULTS ARE SHOWN IN BOLD)

Barbara Lena Boat

NIG Cauchy GG NIG Cauchy GG NIG Cauchy GG

Message length=128 bits

No attack 0 0 0.6 0 0.3 1.2 0 0 0.5

JPEG QF = 30 23.2 24.4 26.1 21.3 22.2 25.3 20.1 21.1 24.4

JPEG QF = 40 18.5 23.2 24.2 17.7 18.7 19.8 15.2 15.0 19.3

AWGN σn = 10 1.7 1.3 3.1 1.5 1.9 2.9 1.9 1.8 2.9

AWGN σn = 20 4.9 4.6 7.7 3.8 4.1 6.4 3.3 3.2 6.8

Median filter 3× 3 2.4 3.2 5.2 2.2 3.4 5.0 2.5 2.7 4.8

Median filter 7× 7 8.2 9.5 9.8 7.9 9.7 10.8 7.5 8.1 8.9

Gaussian filter 3× 3 0 0 1.3 0 1.2 1.7 0 0 1.3

Gaussian filter 7× 7 1.1 1.5 3.0 1.3 2.0 3.3 1.3 1.5 3.1

Gamma correction γ = 2 0 0 0.3 0 0.1 0.3 0 0 0.2

Gamma correction γ = 0.5 3.4 4.5 4.6 3.1 4.1 4.6 2.7 3.7 4.3

Cropping 5% 0.9 1.1 1.5 0.5 0.8 1.2 1.2 1.1 1.9

Cropping 15% 6.2 6.8 9.5 6.1 6.5 8.2 8.4 8.1 9.7

Rotation −5◦ 2.7 2.6 3.1 2.9 3.1 3.7 1.6 1.8 2.5

Rotation 5◦ 2.1 2.2 3.0 2.4 2.5 3.1 1.9 2.2 2.9

Salt & pepper 5% 2.9 3.1 3.6 2.8 2.8 3.4 5.2 5.4 5.9

Salt & pepper 10% 4.2 4.5 5.1 4.5 4.6 5.7 7.9 8.2 9.2

Message length=256 bits

No attack 0 0 0.9 0 0.6 1.6 0 0 0.7

JPEG QF = 30 28.1 30.5 32.3 24.2 28.5 29.9 23.1 23.7 28.9

JPEG QF = 40 24.8 27.3 29.1 22.4 25.6 27.8 20.8 21.6 24.8

AWGN σn = 10 2.3 2.4 3.4 2.0 2.4 4.2 2.8 2.6 4.5

AWGN σn = 20 5.4 5.8 9.9 6.3 6.5 10.8 6.1 6.0 9.4

Median filter 3× 3 4.3 5.4 7.1 4.2 5.8 7.7 4.3 4.8 8.9

Median filter 7× 7 12.8 14.2 15.5 11.7 13.6 14.3 12.5 12.4 15.9

Gaussian filter 3× 3 0 0 2.3 0 2.1 2.6 0 0 1.9

Gaussian filter 7× 7 1.5 2.3 4.5 1.7 3.8 4.6 1.6 1.9 3.7

Gamma correction γ = 2 0 0.3 0.6 0 0.2 0.7 0 0 0.3

Gamma correction γ = 0.5 4.1 5.7 6.9 4.3 5.8 7.2 3.9 5.1 6.7

Cropping 5% 3.4 3.2 4.1 3.1 3.2 4.2 4.1 4.0 5.1

Cropping 15% 9.3 9.1 11.5 8.9 9.1 11.2 9.8 9.8 12.4

Rotation −5◦ 3.9 4.2 5.4 4.3 4.8 5.6 3.1 3.2 5.0

Rotation 5◦ 2.1 2.2 3.0 2.4 2.5 3.1 1.9 2.2 2.9

Salt & pepper 5% 4.5 4.9 5.9 4.5 4.6 5.8 8.1 8.5 9.1

Salt & pepper 10% 7.4 7.6 8.2 7.5 7.7 8.3 12.2 12.7 14.3
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Fig. 6. BER of the extracted watermark using the proposed NIG decoder and
the GG-based decoder in [16] under the AWGN attack with different noise
levels.

TABLE III
BIT ERROR RATES (%) OBTAINED USING THE PROPOSED SCHEME AND
THAT OBTAINED USING THE SCHEMES IN [36], [52] AND [53], UNDER

AWGN WITH VARIOUS NOISE LEVELS FOR Lena IMAGE (PSNR = 45 dB).

σn

5 10 15 20 25 30

Balado [52] 0 8.91 16.46 38.91 54.93 64.12
VLQIM [53] 0.27 8.50 14.27 29.20 40.58 52.08
GM [36] 3.34 8.23 13.84 18.45 23.58 27.52
Proposed 0 0 1.15 2.45 3.72 6.1

lower BER values for different QFs.
The robustness of the proposed decoder is then investigated

under AWGN attack. Fig. 6 shows BER results obtained using
the proposed decoder as well as the results provided by the
method in [16] for the same set of images under the AWGN
with σn varying from 15 to 30. It is seen from this figure that
the proposed NIG-based decoder is more resistant to any level
of noise than the decoder in [16] under the AWGN attack.
To compare the performance of the proposed scheme under
the AWGN attack, Table III gives BER values obtained using
the proposed watermarking scheme and that provided by the
schemes in [36], [52] and [53] when the watermarked images
are contaminated by various levels of the Gaussian noise. The
results in this table confirms that the proposed watermarking
scheme provides a considerably better performance in the
presence of Gaussian noise as compared to the other methods.
To further compare the performance of the proposed decoder
under the AWGN attack, Table IV gives BER values obtained
using the proposed watermarking scheme and that provided by
the schemes in [19] and [30], when the watermarked image
contains a 256-bit message. It is seen from this table that the
proposed NIG-based scheme is more robust than the other
schemes under the AWGN attack.

The performance of the proposed decoder is now compared
to that presented in [30] and [39], under rotation attack. Table
V gives BER values obtained using the NIG-based decoder
when the watermarked images Barbara, Peppers, Goldhill and
Lena are rotated by −10◦, −5◦, 5◦ and 10◦. It is seen from
this table that the watermarking scheme using the proposed
decoder is more robust against rotation attack than the schemes
in [30] and [36].

The performance of the proposed decoder is then compared

TABLE IV
BIT ERROR RATES (%) OBTAINED USING THE PROPOSED WATERMARKING
SCHEME AS WELL AS THAT OBTAINED USING THE SCHEMES IN [19] AND

[30], UNDER AWGN WITH σn = 10 AND 30, FOR Lena, Baboon AND
Peppers IMAGES (MESSAGE LENGTH = 256 BITS).

σn

10 30

Proposed [30] [19] Proposed [30] [19]

Lena 0.6 5.01 1.85 5.7 20.11 26.39
Baboon 0.9 6.13 1.28 6.1 23.11 26.28
Peppers 1.1 3.62 1.32 7.0 18.81 25.92

to that presented in [20] and [54], under median filtering
attack. Table VI gives BER values obtained using the NIG-
based decoder when median filters of mask size 5×5, 7×7 and
9× 9 are applied to the watermarked coefficients containing a
64 bit message for the test images, Barbara, Peppers, Goldhill
and Lena. It is seen from this table that the watermarking
scheme using the proposed decoder is more robust than the
schemes in [20] and [54] under median filtering attack using
masks of various sizes.

In Table VII, we compare the robustness of the proposed
watermarking scheme to that of [30], [36] and [55] when
the watermark images Lena, Barbara, Baboon and Peppers
undergo median filtering with a window size of 3×3, Gaussian
filtering with a window size of 3×3 and AWGN with σn = 10
with a message length of 256 bits. It is seen from this table that
the proposed NIG-based watermarking scheme is more robust
than the other methods by providing lower BER values.

Next, the performance of the proposed decoder is investi-
gated under the scaling attack. Tables VIII gives BER values
obtained using the proposed decoder as well as those yielded
by the method in [16] under scaling attack. It is seen from this
table that the proposed watermarking scheme is more robust
against scaling attack with respect to that in [16]. It should be
noted that for the scaling attack, we assume that the decoder
knows the original size of the image. Therefore, we can resize
the attacked watermarked image to its original size and then
decode the watermark bits.

We also compare the performance of the proposed NIG-
based decoder to that of the method in [16] under the salt &
pepper noise. Tables IX gives BER values for the two methods
with different noise levels. It can be seen from this table that
the watermarking scheme using the proposed decoder is more
robust than the scheme in [16] under the salt & pepper noise
attack.

Table X gives BER values obtained using the proposed
decoder and that provided by the schemes in [30] and [36]
when the watermarked images Lena, Goldhill, Bridge and
Peppers are 5% or 10% cropped, when the message length
is 256 bits. It is seen from this table that the proposed NIG-
based watermarking scheme is more robust than the other
methods against the cropping attack. Table XI gives BER
values obtained using the proposed watermarking scheme
and that provided by the schemes in [30] and [55] when
the watermarked images Boat, Plane, Bridge and Pirate are
filtered by the median and Gaussian filters with a mask of size
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TABLE V
BIT ERROR RATES (%) OBTAINED USING THE PROPOSED WATERMARKING SCHEME AS WELL AS THAT OBTAINED USING THE SCHEMES IN [30] AND [36],

UNDER ROTATION ATTACK FOR A FEW OF THE TEST IMAGES, NAMELY, Lena, Goldhill, Bridge AND Peppers.

θ

-10 -5 5 10

Proposed [36] [30] Proposed [36] [30] Proposed [36] [30] Proposed [36] [30]

Lena 4.2 6.16 4.68 2.9 5.39 3.12 2.4 4.38 1.56 3.9 4.78 3.12
Goldhill 3.5 4.16 8.59 1.6 4.50 7.81 2.2 3.04 7.03 3.4 4.06 6.64
Bridge 4.3 9.31 12.89 2.5 7.02 7.81 2.1 7.06 6.24 4.4 9.23 10.93
Peppers 3.1 5.64 5.47 1.4 4.72 5.07 1.3 5.84 2.34 2.9 6.55 3.51

TABLE VI
BIT ERROR RATES (%) OBTAINED USING THE PROPOSED NIG-BASED DECODER AND THE DECODERS IN [20] AND [54] UNDER MEDIAN FILTERING

ATTACK USING MASKS OF VARIOUS SIZES (PSNR = 42 dB).

5× 5 7× 7 9× 9

Proposed [20] [54] Proposed [20] [54] Proposed [20] [54]

Baboon 1.63 1.55 12.50 3.36 4.88 12.50 7.14 8.89 78.13
Peppers 0 0 7.81 0 0 9.36 1.10 3.00 51.56
Goldhill 0 0.77 9.38 0 1.64 9.38 2.87 5.70 69.69
Lena 1.49 - 9.38 4.34 - 12.50 9.08 - 51.56

TABLE VII
BIT ERROR RATES (%) OBTAINED USING THE PROPOSED WATERMARKING SCHEME AS WELL AS THAT OBTAINED USING THE SCHEMES IN [30], [36] AND

[55], UNDER VARIOUS KINDS OF ATTACKS FOR A FEW OF THE TEST IMAGES.(MESSAGE LENGTH=256 BITS, PSNR = 42 dB)

Median filter 3× 3 Gaussian filter 3× 3 AWGN, σn = 10

Proposed [30] [55] Proposed [36] [55] Proposed [30] [55]

Lena 4.2 6.24 16.56 0 4.73 8.20 0.9 5.01 6.64
Barbara 4.3 19.52 24.49 0 8.71 9.34 1.3 11.47 7.15
Baboon 3.9 17.38 33.63 0 9.80 17.58 0.7 6.13 6.25
Peppers 1.3 8.30 15.63 0 3.55 8.59 1.1 3.62 3.16

TABLE VIII
BIT ERROR RATES (%) OBTAINED USING THE PROPOSED NIG-BASED

DECODER AND THE DECODER IN [16] UNDER SCALING ATTACK.

0.8 1.1 2

Proposed [16] Proposed [16] Proposed [16]

Barbara 4.11 10.39 3.35 8.28 3.35 8.28
Baboon 6.23 21.37 1.12 3.05 1.12 3.05
Couple 2.32 7.19 0.67 1.88 1.08 1.88
Bridge 2.69 7.85 0.21 0.47 0.21 0.47

TABLE IX
BIT ERROR RATES (%) OBTAINED USING THE PROPOSED DECODER AND

THE DECODER IN [16] UNDER SALT & PEPPER NOISE ATTACK.

1% 3% 5%

Proposed [16] Proposed [16] Proposed [16]

Barbara 1.53 3.28 2.30 4.18 2.92 4.80
Baboon 0.66 1.91 1.36 2.81 2.14 3.79
Couple 2.84 6.72 5.33 8.55 7.75 10.35
Bridge 1.81 5.43 4.08 7.27 6.12 9.10

3×3. It is seen from this table that the proposed scheme using
the NIG-based decoder is more robust than the other schemes
against filtering attack.

In terms of complexity, the proposed NIG-based decoder

TABLE X
BIT ERROR RATES (%) OBTAINED USING THE PROPOSED WATERMARKING
SCHEME AS WELL AS THAT OBTAINED USING THE SCHEMES IN [30] AND
[36], UNDER CROPPING FOR A FEW OF THE TEST IMAGES, NAMELY, Lena,

Goldhill, Bridge AND Peppers, (MESSAGE LENGTH=256 BITS).

5% 10%

Proposed [30] [36] Proposed [30] [36]

Lena 0.5 0.78 1.83 3.4 5.85 5.92
Goldhill 1.8 6.64 2.84 6.1 13.67 6.53
Bridge 1.6 8.98 4.63 6.7 18.36 13.42
Peppers 0.8 3.51 6.58 5.1 6.25 10.48

is computationally efficient, since its required CPU time
averaged over a set of images on an Intel Core i7 2.93 GHz
personal computer with 8 GB RAM is 16.70 and 1.06 seconds
for the regular and lightweight (with predefined parameters for
NIG PDF) versions, respectively.

V. CONCLUSION

In this paper, a new multiplicative watermark decoder in
the contourlet domain has been proposed by using the normal
inverse Gaussian PDF as a prior for the contourlet coefficients
of images. The watermark decoder has been developed using
the maximum likelihood criterion in both the clean and noisy
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TABLE XI
BIT ERROR RATES (%) OBTAINED USING THE PROPOSED SCHEME AS

WELL AS THAT OBTAINED USING THE SCHEMES IN [30] AND [55], UNDER
MEDIAN AND GAUSSIAN FILTERING WITH A WINDOW SIZE OF 3× 3 FOR A

FEW OF THE TEST IMAGES, NAMELY, Boat, Plane, Bridge AND Pirate.

Median filter 3× 3 Gaussian filter 3× 3

Proposed [30] [55] Proposed [30] [55]

Boat 2.5 7.89 16.42 0 4.69 9.39
Plane 2.7 7.82 11.80 0 3.51 6.80
Bridge 3.9 11.72 13.37 0 5.86 10.16
Pirate 3.1 9.38 11.43 0 5.86 4.69

environments resulting in closed-form analytical expressions
for the decoder. The performance of the proposed watermark
decoder has been studied in detail by conducting several
experiments, and comparing these results with that of the other
existing decoders. It has been shown that the proposed decoder
provides a more robust decoding performance as its bit error
rate is lower than that provided by other existing decoders.
The robustness of the proposed watermarking scheme against
different attacks such as additive white Gaussian noise, salt
& pepper noise, JPEG compression, Gaussian noise, rotation,
cropping, Gamma correction and median filtering has been
studied and shown to be superior to that of the other existing
schemes.

APPENDIX
A. CLOSED-FORM EXPRESSION FOR THE PROPOSED

NIG-BASED DECODER IN NOISY ENVIRONMENT

In order to obtain a closed-form expression for the proposed
NIG-based decoder in noisy environment, we use numerical
integration to simplify (11). To this end, we employ the local
Simpsons rule for the reference interval [−h2 ,

h
2 ]∫ h

2

−h
2

f(x)dx =
h

6

(
f(
−h
2

) + 4f(0) + f(
h

2
)

)
(A.1)

It is seen from (13) that we have two non-zero subintervals in
fn(n) as [−3σn, 0] and [0, 3σn]. Then (11) can be written as

f(z) =

∫ 0

−3σn

fy(z− τ)fn(τ)dτ︸ ︷︷ ︸
q1

+

∫ 3σn

0

fy(z− τ)fn(τ)dτ︸ ︷︷ ︸
q2

(A.2)

Using (A.1) with three interpolation points in each of the
subintervals, q1 and q2 can be obtained as

q1 =
σn
2

(f(z)fn(0) + 4f(z− 3σn
2

)fn(
3σn

2
)

+ f(z− 3σn)fn(3σn)) (A.3)

and

q2 =
σn
2

(f(z)fn(0) + 4f(z +
3σn

2
)fn(
−3σn

2
)

+ f(z + 3σn)fn(−3σn)) (A.4)

Inserting the corresponding values of fn(n), expression for
f(z) is obtained and is given as (15).

APPENDIX
B. PARAMETER ESTIMATION OF THE NIG DISTRIBUTION

In order to estimate the parameters α and γ of the NIG
distribution, the maximum likelihood (ML) estimation is used
as

logL (α, β, µ, δ;X1, X2, ..., Xn) =
n∑
i=1

logfNIG(xi;α, β, µ, δ) (B.1)

where logL(.) is the log-likelihood estimator. We then apply
the expectation-maximization (EM) algorithm for ML estima-
tion. The EM-algorithm consists of iterating two steps; the
expectation step (E-step) and the maximization step (M-step)
[42], [43].

M-Step: In view of the fact that the NIG distribution is a
mixed distribution, we can write the joint density of X and
Z as fx,z(x, z) = fx|z(x|z)fz(z). Therefore, the maximum
likelihood estimation is rewritten as

logL (α, β, µ, δ;X1, ..., Xn, Z1, ..., Zn) =
n∑
i=1

(
logfx|z(xi|zi;β, µ) + logfz(zi;α, δ)

)
(B.2)

For a symmetric and zero-mean distribution, estimating
logL(α, δ) is sufficient. Therefore, we construct the log-
likelihood estimation on fz(z) as

logL (α, δ;Z1, ..., Zn) =

n∑
i=1

logfz(zi;α, δ) (B.3)

which can be simplified to

logL(α, δ) = nlogδ + nδα− δ2

2

n∑
i=1

1

zi
− α2

2

n∑
i=1

zi (B.4)

Solving (B.4) for δ and α, we have

δ(k+1)2 =
1

1
n

∑n
i=1

1
zi
− n∑n

i=1 zi

(B.5)

and

α(k+1) =
nδ(k+1)∑n
i=1 zi

(B.6)

E-Step: In the E-step, by employing the moments around
zero of the generalized inverse Gaussian distribution [42], [43],
E(Zi|Xi = xi) and E(Z−1i |Xi = xi) are given by

E(Zi|Xi = xi) =
α√

δ2 + x2i

K0(α
√
δ2 + x2i )

K1(α
√
δ2 + x2i )

(B.7)

and

E(Z−1i |Xi = xi) =

√
δ2 + x2i
α

K2(α
√
δ2 + x2i )

K1(α
√
δ2 + x2i )

(B.8)

The EM algorithm produces improved parameter estimates in
each step. The initial values for EM algorithm are obtained
by calculating the sample moments m̄i, i = 1, 2, ... using the
moment generating function M(t) = E[etx] given by [33],
[45],

MNIG(x) = exp
(
δ(α−

√
α2 − t2)

)
(B.9)
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The second and fourth moments of the NIG distribution are
obtained as

m̄2 =
δα2

γ3
, m̄4 =

3

δγ
(B.10)
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